XML & Laboratory Workflows
Copyright © 2003 BioXing. All rights reserved.

XML Facilitates Laboratory Workflow

And

 Improves High Throughput Systems
[image: image11.png]
Pete Smietana, Ph.D.

CEO and Chief Software Architect

 BioXing

201 Fieldcrest Ct.

Danville, CA 94506

psmietana@bioxing.com
www.bioxing.com
Xing Jian Lou, Ph.D.

Scientific Advisor

BioXing

May 31, 2004
Version 1.05

Copyright (2003 BioXing. All rights reserved.

Introduction

Drug development is usually a long journey. Steps involved in this journey such as target discovery and target validation could take a week to years to finish. Automated or semi-automated processes to perform experiments for these steps utilizing a myriad of instrumentation are usually referred as workflows. Instruments involved in a workflow usually have different operation methods that require specific input parameters and output data in a variety of formats. Since manufacturers usually do not provide the ability to control instruments from upstream applications and they usually do not provide information about the format of the outputted data files, it is difficult for upstream tracking applications connected to data repositories that contain tagging information and instrument parameters to pass this data automatically to instrument control software. Subsequently, output data files do not contain tagging data that can be used for automatic storing and linking of acquired data to projects, experiments, experiment run-numbers and samples in data repositories. This difficulty has been amplified by the revolution in biotechnology that is bringing new types of and more sensitive instruments to bear on discovery problems.

The disconnection among upstream applications and data files also hinders downstream data analysis, integration and modeling because such down stream processes often require data obtained from upstream processes that used different instruments and various protocols. Solving complex biomedical or drug development questions require that all workflow data be retrieved, analyzed and modeled as a whole (references).

One way to solve this problem is to standardize input and output formats for all instruments involved in the workflow. There are a number of efforts to create standards for specific instrument types (MIAME, Rosetta) and for all instruments (lecis.org Los Alamos has a protocol-albeit too complex, Generalized Analytical Markup Language - GAML). However, instruments evolve with different technologies that require much different input control parameters and detectors; output data in complex binary formats and utilize a variety of supporting data files. Versions of the same technology also vary as new information is added to repositories. For example, oligo microarrays are based on sequence data and gene/EST clustering algorithms. These repositories have evolved standard formats, although not optimal formats, they nonetheless facilitate processing of their information by a host of applications. The rapid evolution of technology makes a complete standardization of instrumentation extremely difficult, hence not practical. A more practical approach is to standardize the format of information flow among different technology and different instrumentation.

 In this article we analyze the bottlenecks in laboratory workflows and present a method of improving the workflow by using XML and XSLT.

[image: image1.png]Laboratory Workflow Bottlenecks

Figure 1 illustrates a typical laboratory workflow showing the pipeline and interaction of many components that are involved in analyzing samples where the numbered red lightening bolts indicate potential bottlenecks that hinder complete laboratory automation.

Figure 1: Laboratory workflow showing bottleneck locations.

In this figure a project could contain one or more samples that need to be analyzed by one or more experiments. Each experiment is composed one or more SOPs (Standard Operating Procedures) for performing the analysis. Each SOP contains laboratory tasks with each task containing a set of laboratory protocols and/or instrument methods. Each protocol/method is composed of instructions and a data entry form for inputting specific protocol parameters.

Since tasks and protocols/methods are performed in a specific order there is usually a scheduler (explicit or implicit) in the workflow.

Notice that the workflow pipeline is a loop because the results of one experiment may require repeat analysis, for example, the need to perform replicate and/or orthogonal validation experiments and the results may also provide real-time feedback.

The data repository, which may be composed of multiple databases, contains all of the acquired, analyzed and annotated data and reference information.

Status reports are typically reports that provide information about where and what is happening to a sample in the pipeline, information about a collection of samples, the status of projects, accounts, etc. The analysis section involves both acquired data from this pipeline along with information and results from other sources and linking to third party software applications.

Several potential bottlenecks prevent complete laboratory automation in the workflow, including: (indicated by numbered red lightening bolts in Fig. 1):

1. Inability to load protocols and methods for sample preparation and instrument control affects consistency in processing and electronically recording of specific parameters and data methods.

2. Inability to load supporting information can affect instrument performance, analysis and validation of data.

3. Lack of using globally unique IDs for identifying protocols, biochips, microtitre plates and other components prevents automatic linkage in the workflow.

4. Instrument control software does not recognize upstream tagging information or control parameters, which must be manually entered.

5. Acquired data does not contain upstream tagging information and is usually in a proprietary format that complicates data processing, requiring manual storage of acquired data.

6. Analysis programs that process disparate data is limited because of proprietary or non-publicly available binary data formats.

Bottlenecks 1-3 are more or less the consequence of the bottlenecks 4-6 because upstream tagging information or control parameters and experiment conditions can not be automatically read by the down stream analysis programs, researchers are usually reluctant to enter such tagging information and parameters during the experiment process. Hence, the workflow cannot really flow. To solve this “communication” problem within a workflow or among workflows, XML is used as the “communicator”.

Figure 2 shows an expanded view that focuses on instrumentation. Manufacturers usually supply information as summarized in the following table.

	Item
	Description

	Sample Protocols
	Instructions usually specify a sequence of operations for preparing samples for measurement by the instrument and related parameters based upon properties of the samples.

	Instrument Methods
	Instructions for setting instrument run parameters for the type of experimental measurement. Methods also contain calibration procedures and schedules when calibrations should be performed.

	Firmware
	Firmware is the software that is usually stored in updateable memory within an instrument and is used to direct operation of and monitor the components of the instrument. Usually it does not have a User Interface and is not directly accessible by user.

	Control Software
	Software that has a User Interface for accepting parameters and providing instrument status. Sometimes the software can accept parameters through command line arguments. The basic function of the control software is to send parameterized commands and receives status and raw measurement data from the firmware. It has the responsibility of storing data onto the hard drive usually in binary files that can only be read using the manufacturers data readers.

	Data Analysis Software
	Software that processes the raw data and outputs graphically, tabular or in other standard formats analysis of the measurements. Some software allows the user to correlate multiple sets of measurements from the same instrument, but usually the software does not correlate data from multiple types of instruments.

Sample protocols evolve over time, and the evolution of the protocols should be annotated in laboratory notebooks. For example journal references for steps that have been optimized should be updated, date-time should be stamped and version numbers, authors and other relevant information should all be recorded. . It is equally important that instrument firmware, control software and data analysis software have date-time stamps, version numbers, authors and other relevant information that can be readily obtained and stored with a particular running of an experiment.

In addition, manufacturers supply materials such as biochips and microtitre plates and/or reagents, dyes and other chemicals that are used for each experiment. Each of these items should be supplied with their relevant data in an electronic format. For example, oligo biochips will have geometry of sets of oligos distributed throughout the surface representing genes, ESTs, controls and/or replicates where knowledge of this pattern is necessary for interpretation of the raw scanned data. This knowledge is also necessary for the development of new types of algorithms for determining background levels, signal noise, and normalization values and for applications that perform correlations and integration.

Normally the demands of high through put generate requirements for a multi-instrument controller that coordinates and optimizes the activities of instruments used in a workflow much like a conductor does with an orchestra. In addition, multi-instrument controllers will also be required for complex system biology studies where the number of samples will increase to obtain valid statistics and where precise repetitive measurements and time intervals are needed. Since regulatory pathways governing gene and protein expression are sensitive to concentrations, metabolites, time and environmental factors.

Some of the information that needs to be recorded and updated for each instrument is:

· Manufacturer

· Model

· Serial number

· Unique Laboratory Instrument ID

· Multiple tracking records containing

· Dates

· In-Service

· Calibration

· Maintenance

· Out-of-Service

· Protocols, Methods, Software, Supporting data

· Identifying Name

· Date of creation

· Date of update

· Version Number

· Actual Item (protocol, method, …)

· Location

· Current Laboratory Name

· Transferred from:

· Laboratory Name

· Date Transferred

This information can be used to set up schedules, for automation and to track down anomalies associated with updates and instrumentation degradation.

[image: image2.wmf]…

Experiment Setup

Run Experiment

SOP

-

Tasks

-

Protocols/Methods

Protocols/Methods

Protocol Forms

BioChips,

Fluorescent Dyes,

Microtitre plates,

…

Instrument(s)

Samples

Project

Scheduler

Database

Lab Tasks

SOPs

Manufacturer

Sample Protocols

& Instrument Methods

Acquired

Data

Experiment

Form Created

for each protocol.

Fill in forms

with data

for / from

experiment

Manufacturer

BioChip Data, …

Laboratory Workflow Bottlenecks

Disease

Analysis/Annotation

Status

Reports

Genomic

Results

Transcriptomic

Proteomic

1

2

4

5

6

3

2/14/2003

Copyright © 2003 BioXing Corporation. All rights reserved.

Figure 2: Instrument Data Model

HyperText Markup Language (HTML)

HTML is a language used by web developers to display information on web pages. Fundamentally it uses keywords with attribute modifiers to specify; for example, paragraphs, tables, fonts, colors, sizes, table properties, backgrounds, dynamic properties and other layout information used to represent or draw entities on a web page. In this context entities can be paragraphs of text, tables with column and row headers and data in cells, images and in general anything that is displayable on a web page or information intended for the HTML interpreter. The World Wide Web Consortium (W3C, www.w3.org/MarkUp) defines these keywords and other specifications for web standards.

In general the language uses nested begin and end keywords to delineate entities. The begin keyword with any attribute modifiers is enclosed within a left angular bracket (“<”) and a right angular bracket (“>”) while the end keyword, which does not have any attributes, is enclosed within a left bracket (“</”) and a right bracket (“>”). For example, a HTML document will contain <html> …</html> begin and end brackets that inform the HTML interpreter that HTML code will be found within these brackets. Within the <html> … </html> will be <body> …</body> that define the body of the HTML document. An excellent HTML reference site is http://www.w3schools.com/html.

For example, the HTML syntax for representing a table would look like:

<html>

<body>

<table>
<tr><th>column name 1</th><th>column name 2</th><th>repeat for each column name</th></tr>
<tr><td>entry for cell in col 1</td><td>entry for cell in col 2</td><td>entry for additional col</td></tr>
<tr>repeat for each row</tr>
</table>

where <table></table>defines the beginning and ending of a table
where <tr></tr> defines the beginning and ending of a row
where <th></th> defines the beginning and ending of a column label within row

where <td></td> defines the beginning and ending of a cell within a row

</body>

</html>

Note: The keywords html, body, table, tr, th and td are all defined by the Web standard for HTML.

Using the above syntax, the HTML code for a table with 5 columns, 1 light grey colored header row with labels centered and 4 data rows with data in the fourth column displayed in a red color is:

<html>

<body>

<table cellSpacing="1" border="2">

<tr bgcolor=”lightgrey” align=center>

<th>N</th>

<th>X</th>

<th>Y</th>

<th>Sample ID</th>

<th>Volume (ml)</th>

</tr>

<tr>

<td>1</td>

<td>A</td>

<td>1</td>

<td>BxS-050401-1</td>

<td style=”color=red” align=center>1</td>

</tr>

<tr>

<td>2</td>

<td>A</td>

<td>2</td>

<td>BxS-050401-101</td>

<td style=”color=red” align=center>1</td>

</tr>

<tr>

<td>3</td>

<td>A</td>

<td>3</td>

<td>BxS-050401-2</td>

<td style=”color=red” align=center>1</td>

</tr>

<tr>

<td>4</td>

<td>A</td>

<td>4</td>

<td>BxS-050401-110</td>

<td style=”color=red” align=center>1</td>

</tr>

</table>

</body>

</html>

Note: The attributes cellspacing, border, bgcolor, align and color and their values lightgrey, red and center are all defined by the Web standards for HTML.

[image: image3.png]
Figure 3: Table created with above HTML code:

eXtensible Markup Language (XML)

The syntax structure for XML is similar to HTML, except it is possible to define sets of keywords and attributes which makes it extensible. These keywords and attributes can be used to represent hierarchies of information. In addition, XML syntax provides ways to describe the type of data and to specify validation checks for the data that are passed from an informatics data source to a multi-instrument controller or directly to the instrument's controller. Therefore, XML can be used to communicate to instruments easily readable and parseable disparate types of data to applications in a workflow.

In the company .xml file the keywords document, name and copyright are used to represent a hierarchy of information. The root level is designated by the keyword document and the first level of branches are represented by name and copyright. The alternative form has name and copyright as attributes to document.

Company .xml

<document>

<name>BioXing, Inc.</name>

<copyright>Copyright 2003, BioXing, Inc. All Rights Reserved. </copyright>

</document>

alternative format

<document name=”BioXing, Inc.”, copyright=”Copyright 2003, BioXing, Inc. All Rights Reserved.” />

The BxConnectionsHeader.xml file contains a root level BxConnections_x0020_Data_x0020_Header where ‘_x0020_’ represents a blank space between words. The BxConnectionsHeaderDefinition keyword has branch with keyword row which in turn has branches with keywords name and type. Note that the row branch is repeated with different values for the name and type keywords. The BxConnectionsHeaderDefinition level is used to define the names and data type properties for each name. In this example, names represent either string (text) or integer values. It is possible to extend the row branches to include for example, other properties such as minimum or maximum range values or default values using keywords such as minimum, maximum and default. Therefore, this model provides a simple way to describe the type of data and validation checks for the data that is to be pass.

BxConnectionsHeader.xml

 <BxConnectionsHeaderDefinition>

<row>

<name>Affiliation</name>

<type>string</type>

</row>

<row>

<name>ProjectID</name>

<type>string</type>

</row>

<row>

<name>Project</name>

<type>string</type>

</row>

<row>

<name>ExperimentID</name>

<type>string</type>

</row>

<row>

<name>Experiment</name>

<type>string</type>

</row>

<row>

<name>Run</name>

<type>integer</type>

</row>

<row>

<name>SOPID</name>

<type>string</type>

</row>

<row>

<name>SOP</name>

<type>string</type>

</row>

<row>

<name>Task</name>

<type>string</type>

</row>

<row>

<name>ProtocolID</name>

<type>string</type>

</row>

<row>

<name>Protocol</name>

<type>string</type>

</row>

<row>

<name>MicroTitrePlate</name>

<type>string</type>

</row>

 </BxConnectionsHeaderDefinition>

In the BxExample.xml file the root level is designated by the keyword NewDataSet which has a first level keyword of the BxConnections_x0020_Data_x0020_Header section contains the values for names in the BxConnectionsHeaderDefinition section. Using BxConnectionsHeaderDefinition the values can be read properly and validated. The first line in this file indicates that the XML syntax can be validated against the XML Standard version 1.0. The second line indicates that a eXtensible Stylesheet Language Transform(XSLT) will be used to render this file in a browser. The XML namespace (xmlns) is indicated and the name of the file in the namespace is indicated by the href attribute as is the type of file.

BxExample.xml

<?xml version="1.0"?>

<?xml-stylesheet xmlns="http://www.bioconnections.com/BxWServices/" type="text/xsl" href="BxTransform.xsl"?>

<NewDataSet >

 <BxConnections_x0020_Data_x0020_Header>

 <Affiliation>BioXing</Affiliation>

 <ProjectID>BxP-100101-01</ProjectID>

 <Project>Breast Cancer</Project>

 <ExperimentID>BxE-050802-1</ExperimentID>

 <Experiment>Study Protein and Gene Expression Correlation</Experiment>

 <Run>8</Run>

 <SOPID>BxSOP-042702-01</SOPID>

 <SOP>Gene Expression</SOP>

 <Task>Sample Preparation</Task>

 <ProtocolID>BxSP-050702-1</ProtocolID>

 <Protocol>Sample Storage</Protocol>

 <MicroTitrePlate>BxMTP-081402-71</MicroTitrePlate>

 </BxConnections_x0020_Data_x0020_Header>

</NewDataSet>
eXtensible Stylesheet Language Transform

XSLT files are used to transform XML files into other forms (HTML files, other XML files, or application specific text files). A transform file is a scripting file written using the eXtensible Stylesheet language in an XML syntax structure that can process one or more input XML files to create an output file that is to be read by a target application. That is, there would be a unique XSLT file for the same set of XML files for each type of target application. Instrument manufacturers can provide file input specifications and informatics system developers could create XSLT files specific for each manufacturer or instrument manufacturers can create XSLT files specific to the XML files created by informatics systems. Therefore, XSLT provides a flexible mechanism for rendering and extracting data contained within XML files in a format compatible with the requirements of the target instrument controller.

In reviewing this file, it should be noted that HTML is used along with XSL so a method has been developed to distinguish between them.

The namespace for the transform is defined in the second line and represented by the prefix ‘xsl:’ and this prefix is used to designate all non-HTML keywords. XSL keywords used in this example are:

	XSL keywords
	Description

	xsl:output
	Designates the type of output

	xsl:variable
	Holds temporary data values

	xsl:template
	Indicates the node (branch) for the xsl commands.

	xsl:for-each …/xsl:for-each
	Brackets a loop through each node

	Select
	A node to navigate to or a node from which a value should be selected.

	$variable
	The $ with the variable name designates the value that the variable contains.

	Document
	Import data from another file

	xsl:value-of
	Get the value associated with by the select node.

BxTransform .xsl

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="html"/>

<xsl:variable name="company" select="document('company.xml')"/>

<xsl:variable name=”HdrDefn” select=”document(‘BxConnectionsHeaderDefinition.xml’)”/>

<xsl:variable name="HdrValue" select="//BxConnections_x0020_Data_x0020_Header"/>

<xsl:template match="/">

<HTML>

<HEAD>

<H1 style="color='darkblue'" align="center"><xsl:value-of select="$company//name"/>

</H1>

</HEAD>

<table align="center">

<xsl:for-each select="$HdrDefn//row">

<xsl:variable name="HdrNodeName">

<xsl:value-of select='name'/></xsl:variable>

<tr>

<!-- Fill in row label -->

<th><xsl:value-of select="name"/></th>

<td>

<!-- Fill in data for the row -->

<xsl:value-of select="$HdrValue/*[local-name()=$HdrNodeName]"/>

</td>

</tr>

</xsl:for-each>

</table>

</BR>

<BODY>

 <div style="font-size:9" align="center">

 <xsl:value-of select="$company//copyright"/>

 </div>

</BODY>

</HTML>

</xsl:template>

</xsl:stylesheet>

Web Browser Output

Figure 3 is the output displayed in a web browser that processed the above BxExample.xml file using the BxTransform.xsl transform file that imported company.xml and BxConnectionsHeaderDefinition .xml files.

[image: image4.png]
Figure 3

Figure 4 is the web browser output from an .xml file that used a different .xls file to pass microtitre plate sample information to the instrument control software and to construct the tabular view including the bold faced time, alternating gray lines and an input field for operator comments.

[image: image5.png]
Figure 4: 96-Well microtitre plate with sample IDs passed to robotics instrument

Method Reference .xml

<Microarray>

<heading ID=” ”, name=” ”, manufacturer=” ”, type=” ”, geometryRef=” ”, size=”m” />

<oligos>

<oligo N=”1”, x =” ”, y=” ”, sequence=” ”, Gene=” ”, EST=” ” />

<oligo N=”2”, x =” ”, y=” ”, sequence=” ”, Gene=” ”, EST=” ” />

…

<oligo N=”m”, x =” ”, y=” ”, sequence=” ”, Gene=” ”, EST=” ” />

</oligos>

</Microarray>

or

<MicrotitrePlate>

<heading ID=” ”, name=” ”, rows=”n”, columns=”m”, size=” ” />

<wells>

<well N=”1”, x=”A”, y=”1”, content=” ”, volume=”” />

<well N=”2”, x=”A”, y=”2”, content=” ”, volume=”” />

…

<well N=”n*m”, x=”n”, y=”m”, content=” ”, volume=”” />

</wells>

</MicrotitrePlate>

Example Browser Output

Communication between Informatics System and Instruments

Once the XSLT file is created, the upstream tasks simply create the appropriate XML files that contain the data tagging and instrument control parameters. The instrument control software can then

· Use its browser to process and display the XML files with the XSLT file.

· Directly read in a text file containing XML file data that the XLST file created.

· Use XML’s XPath function to navigate parent/child XML nodes to locate specific information and use an XML reader function to retrieve the information directly from the XML file.

In addition, the tagging data contained in the XML files can be attached to or incorporated within the output acquired data file that will allow informatics software to automatically store the acquired data in the repository by using the tags to create the relational links.

XML data files coupled with XSLT scripting files can help eliminate automation workflow bottlenecks. Therefore, instrument controllers should be designed to process XML/XSLT files for dynamic control and tagging of acquired data. Instrument manufacturers should consider their instruments as peripheral components to laboratory workflow informatics data systems by providing easily loadable device drivers (e.g. data readers and writers for proprietary data formats) similar, in concept, to those already in use by peripheral device manufacturers in the computer industry. Informatics data systems should provide mechanisms, much like computer operating systems, for installing these device drivers so that new instruments can be seamlessly integrated into laboratory workflows.

References

1. Esposito, Dino, Applied XML Programming for Microsoft .NET, Microsoft Press, 2003

2. Generalized Analytical Markup Language – GAML (http://www.gaml.org)

3. LECIS: Laboratory Equipment Control Interface Specification, http://www.lecis.org

4. McIntosh, R. L., Yau, A., LabRAT (Laboratory Rapid Automation Toolkit): A Flexible and Robust Peer-to-Peer Architecture with XML Based Open Communication for Laboratory Automation, JALA, Vol 8, No. 1, February/March 2003.

� EMBED PowerPoint.Slide.8 ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PowerPoint.Slide.8 ���

Smietana & Lou Version 1.05
Page 18 of 18
5/31/2004

[image: image6.wmf]Instrument Data Model

2/14/2003

Copyright © 2003 BioXing Corporation. All rights reserved.

Protocols/Methods

Method Forms

Instrument(s)

Manufacturer

Sample Protocols &

Instrument Methods

Manufacturer

BioChip

,

Microtitre plate,

Fluorescent dyes,

… Data

Acquired Data

Manufacturer

Analysis

Results

Multi

-

Instrument

Controller

[image: image7.png][image: image8.wmf]Instrument Data Model

2/14/2003

Copyright © 2003 BioXing Corporation. All rights reserved.

Protocols/Methods

Method Forms

Instrument(s)

Manufacturer

Sample Protocols &

Instrument Methods

Manufacturer

BioChip

,

Microtitre plate,

Fluorescent dyes,

… Data

Acquired Data

Manufacturer

Analysis

Results

Multi

-

Instrument

Controller

[image: image9.png][image: image10.wmf]…

Experiment Setup

Run Experiment

SOP

-

Tasks

-

Protocols/Methods

Protocols/Methods

Protocol Forms

BioChips,

Fluorescent Dyes,

Microtitre plates,

…

Instrument(s)

Samples

Project

Scheduler

Database

Lab Tasks

SOPs

Manufacturer

Sample Protocols

& Instrument Methods

Acquired

Data

Experiment

Form Created

for each protocol.

Fill in forms

with data

for / from

experiment

Manufacturer

BioChip Data, …

Laboratory Workflow Bottlenecks

Disease

Analysis/Annotation

Status

Reports

Genomic

Results

Transcriptomic

Proteomic

1

2

4

5

6

3

2/14/2003

Copyright © 2003 BioXing Corporation. All rights reserved.

_1115382465.ppt

…

Experiment Setup

Run Experiment

SOP-Tasks-

Protocols/Methods

Protocols/Methods

Protocol Forms

BioChips,

 Fluorescent Dyes,

Microtitre plates,

 …

Instrument(s)

Samples

Project

Scheduler

Database

Lab Tasks

SOPs

Manufacturer

Sample Protocols

 & Instrument Methods

Acquired

 Data

Experiment

Form Created

for each protocol.

Fill in forms with data for / from experiment

Manufacturer

BioChip Data, …

Laboratory Workflow Bottlenecks

Disease

Analysis/Annotation

Status

Reports

Genomic

Results

Transcriptomic

Proteomic

1

2

4

5

6

3

2/14/2003

Copyright © 2003 BioXing Corporation. All rights reserved.

This slide illustrates a generic laboratory workflow. A project contains one or more samples that need to be analyzed by one or more experiments. Each experiment is composed of tasks that have lab protocols and instrument methods for each SOP (Standard Operating Procedure) for performing the analysis. Since the lab tasks are performed in a specific order and since it is important to be consistent when analyzing samples (e.g. mRNA has a half-life) there is usually a scheduler (explicit or implicit) of some sort in the workflow. The actual experiment may include loading manufacturer instrument data and method parameters and then storing the acquired data into a database along with all of the experimental conditions. Notice that the workflow pipeline is a loop since the results of one experiment may spawn the need to perform replicate and/or orthogonal experiments and may provide real-time feedback. The status reports are typically reports that provide information about where a sample is in the pipeline, information about a collection of samples, the status of projects, accounts, etc. The analysis section involves both acquired data from this pipeline along with information and results from other sources.

_1115558938

_1115558289

_1114522690

_1115382188.ppt

Instrument Data Model

2/14/2003

Copyright © 2003 BioXing Corporation. All rights reserved.

Protocols/Methods

Method Forms

Instrument(s)

Manufacturer

Sample Protocols &

 Instrument Methods

Manufacturer

BioChip,

Microtitre plate,

Fluorescent dyes,

… Data

Acquired Data

Manufacturer

Analysis

Results

Multi-Instrument

Controller

